Code No.: 50H16

MR15-2015-16 & 2016-17 Batch

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, NOVEMBER-2018

Subject: Environmental Science

Branch: ECE

Time: 3 hours

Max. Marks: 60

PART – A

Answer ALL questions of the following

5x2Mark=10 Marks

- 1. Define eco system.
- 2. What are the major impacts due to over usage of ground water?
- 3. What are sources of soil pollution?
- 4. What are green house gases?
- 5. Write a note on Clean Development Mechanism

PART-B

Answer any 5 questions of the following

5x 10 Marks= 50Marks

- 1. a) Give the classification of Ecosystem.
 - b) "The flow of energy is one –way and continuous in an ecosystem". Justify.
- 2. a) List the main components of an Ecosystem. And briefly describe the functions of each.
 - b) Difference between Food chain & Food web?
- 3. Explain genetic biodiversity, species diversity and eco system biodiversity
- 4. Discuss the major advantages of metallic and non metallic minerals.
- 5. a) Discuss various measures to control vehicular pollution.
 - b) Discuss how solid waste can be managed by industries
- 6. a) Write short note on how does soil pollution affect soil productivity?
 - b) Explain the adverse effects of air pollution.
- 7. Discuss the potential and contribution of these gases to global warming phenomenon
- 8. Explain the following
 - a) Role of Information Technology in Environment.
 - b) Environmental education

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, NOVEMBER-2018

Subject: Electronic Circuit Analysis

Branch: ECE

Time: 3 hours

Max. Marks: 60

PART - A

Answer ALL questions of the following

5x2Mark=10 Marks

- 1. What is the coupling method required to amplify the DC signals in a multistage amplifiers? Give reasons.
- 2. Derive an expression for gain with feedback A_f in terms of gain without feedback A and desensitivity factor D.
- 3. State the frequency of RC phase shift oscillator?
- 4. What is a heat sink and why it is used?
- 5. Explain the necessity of using stabilization circuits in tuned amplifiers?

PART-B

Answer any FIVE Questions of the following

5x10 Marks= 50Marks

- 1. a) Explain the different coupling mechanisms used in multistage amplifiers.
 - b) Derive the expression for current gain, input resistance, voltage gain of a generalized transistor amplifier.
- 2. Draw the circuit diagram of cascode amplifier and also derive the expressions for A_1 , A_V , R_I & R_0 (use approximate model for analysis of the circuit).
- 3. a) Explain in detail about sampling circuits in Feed back amplifiers.
 - b) What are the different types of feedback amplifiers? Give their equivalent circuits?
- 4. a) List the steps required to carry out the analysis of a feedback amplifier.
 - b) Derive the expression for input and output resistance of voltage shunt feedback amplifier.
- 5. a) Draw the block diagram and derive the expression for frequency of oscillations for Hartley oscillator. [6]
 - b) A Hartley Oscillator circuit having two individual inductors of 0.5mH each, are designed to resonate in parallel with a variable capacitor that can be adjusted between 100pF and 500pF.

 Determine the upper and lower frequencies of oscillation. [4]
- 6. a) Explain the operation of Colpitts oscillation with a neat circuit diagram and deduce the expression for frequency of oscillations. [7]
 - b) A Colpitts Oscillator circuit having two capacitors of 24nF and 240nF respectively are connected in parallel with an inductor of 10mH. Determine the frequency of oscillations of the circuit.
- 7. In a series fed Class-A power amplifier, explain the importance of the position of operating point on output signal swing. Show that the conversion efficiency is 25%.
- 8. Draw the circuit diagram of a double tuned circuit and explain its working and derive the expression for Bandwidth?

Code No.: 50241

MR15-2015-16 & 2016-17 Batch

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, NOVEMBER-2018

Subject: Principles of Electrical Engineering

Branch: ECE

PART - A

Answer ALL questions of the following

5x2Mark=10 Marks

- 1. Write the laplace transform of second order differential equation.
- 2. Write the expression of 'Z' parameters in terms of 'Y' parameters.
- 3. Write the expressions for the transfer function and the corner frequency of the High pass filter.
- 4. State and briefly explain Tellegen's theorem.
- 5. What are the two components of no load current incase of a transformer?

PART-B

Answer any FIVE Questions of the following

5x10 Marks= 50Marks

- 1. a) Explain the procedure to find the solution of a differential equation using Laplace transform method
 - b) Explain the transient response of series RL circuit?
- 2. A) Prove that the unit of (L/R) is second.
 - B)A coil of resistance of 30 Ω and inductance of 0.6H is switched on a 240V supply.
 - a) Calculate the rate of change of current (i) at the instant of closing of the switch when t=0 (ii)at time t=2(L/R)
 - b)the magnitude of final steady state current.
- 3. a) Through derivation, express the z parameters in terms of the ABCD parameters.
 - b) For a two-port, let A = 4, $B = 30\Omega$, $C = 0.10^{\circ}$ and D = 1.5. Calculate the input impedance

$$Z_{in} = \frac{V_1}{I_2}$$
, when:

- i. the output terminals are short-circuited,
- ii. the output port is open-circuited,
- iii. the output port is terminated by a 10Ω load
- 4. (a) Why impedance parameters are called open circuit parameters?
 - (b) Find Z parameters for the network shown in figure 1.

Figure. 1

- 5. a) Explain T type attenuator and also design a T type attenuator to give an attenuation of 40dB and to work in a line of 400Ω impedance.
 - b) Write briefly on Lattice attenuator.
- 6. a) Design a symmetrical π -type attenuator?
 - b) Design M-derived T-section low pass filter.
- 7. a) Give a brief Treatise on salient features of Millman's theorem.
 - b) Determine the voltage across 6Ω resistance using superposition theorem in the figure below.

- 8. a) Give a brief Treatise on the operation of single phase Transformer.
 - b) Derive the equivalent impedance at secondary side if primary is transformed to secondary side.

Code No: 50404

MR15

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

H B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, EXAMINATIONS,

DECEMBER-2018

Subject: Signals and Systems

Branch: ECE

Time: 3 hours

Max. Marks: 60

5x2Mark=10 Marks

PART - A

Answer ALL questions of the following

- 1. Classify continuous time signals.
- 2. State Sampling theorem.
- 3. Define transfer function of LTI system.
- 4. Find Laplace transform of delta impulse function.
- 5. State and prove Time reversal property in Z-transform.

PART-B

Answer any FIVE Questions of the following

5x10 Marks= 50Marks

- 1. a) Prove that the signals $\sin(n\omega_0 t)$ and $\cos(n\omega_0 t)$ are orthogonal to each other over the interval $(t_0,$
 - b) Write short notes on Orthognal functions.
- 2. a) Define and sketch the following elementary signals
 - i. Unit impulse signal ii. Unit step signal iii. Signum function
 - b) Write short notes on causal and non-causal system.
- 3. a) Write short notes on Nyquist Rate.
 - b) Write short notes on Hilbert transform
- 4. a) Find the trigonometric Fourier series of function below.

- b) Verify time differentiation and duality properties of Fourier Transform.
- 5. a) Define the linearity, time invariant and casual properties of a system.
 - b) Find the convolution of the following sequences x[n] and h[n],

 $x[n]=\{1, 2, 3, 4\}$ and $h[n]=\{1, 1, 2, 3\}$

6. a) The impulse response and the excitation function of a LTI causal system are shown in Fig below.

find the graphical convolution of x(t) with h(t).

- b) Write short notes on Distortionless transmission of LTI system
- 7. a) If $x(z) = \frac{1}{(Z^2 + 3Z + 2)}$, |z| > 2, find x(n).
 - b) Determine inverse Laplace transform of $x(s) = \frac{1}{(s+3)(s+5)} \operatorname{Re}(s) > -3$
- 8. a) Find the Z-transform of the following sequences

i)
$$x(n) = [u(n) - u(n-5)]$$

$$ii) x(n) = \left(\frac{2}{3}\right)^n u(n)$$

b) Find the impulse response of the Discrete system response $y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n)$

MR15 2015 16 Dates Code No.: 50405

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, EXAMINATIONS, **DECEMBER-2018**

Subject: PROBABILITY THEORY AND RANDOM PROCESS

Branch: ECE

Time: 3 hours

PART - A

Answer ALL questions of the following

5x2Mark=10 Marks

Max. Marks: 60

- 1. What is the probability of getting 53 Mondays in a leap year?
- 2. Define correlation coefficient.
- 3. What is meant by Mean Ergodic process?
- 4. Why Fourier Transform is not used to describe the random process?
- 5. What is linear time invariant system?

PART-B

Answer any FIVE Questions of the following

5x10 Marks= 50Marks

1. a) State and prove Bayes theorem of probability

[6M]

b) In a single throw of two dice what is the probability of obtaining a sum of at least 8.

[2M]

- c) A card is drawn from a pack of 52 cards, find the probability of getting a king or heart of a red card [2M]
- 2. a) Box1 contains 2000 diodes of which 10 percent are defective. Box2 contains 3000 diodes of which 5 percent are defective. Two diodes are picked from a randomly selected box. Find
 - The probability that both diodes are defective? (i)
 - If both diodes are defective, what is the probability that they came from (ii) box1?
 - b) Write the combined sample space if you toss a coin and throw a die at same time.
- 3. a) How do you find marginal distribution function and marginal density function from the joint distribution and joint density function respectively.
 - b) Discuss marginal distribution functions.
- 4. Find the density function of the random variable Z= X+Y, where X and Y are two independent uniform random variables over (-2.1) and (-1,1) respectively.

- 5. a) Prove that the random process $X(t) = A \cos(\omega_c t + \theta)$ is WSS if it is assumed that ω_c is a constant and θ is a uniformly distributed variable in the interval $(0,2\pi)$.
 - b) Explain the concept of Ergodicity in detail.
- 6. a) Write short notes on Ergodic process
 - b) Find the mean and Auto correlation function of the Random process $X(t) = A\cos(wt + \theta)$ where A and w are constants, θ is a random variable uniformly distributed on the interval $(0,2\Pi)$
- 7. a) If the PSD of X(t) is $S_{xx}(w)$. Find the PSD of dx(t)/dt b) X(t) is a stationary random process with spectral density Sxx(w). Y(t) is another independent random process $Y(t) = A\cos(wt + \theta)$, where θ is uniformly distributed over the range $(-\pi, \pi)$. Find the spectral density function of Z(t) = X(t).Y(t)
- 8. Find the autocorrelation function of response of an LTI system and cross correlation function of input and output of an LTI system.

Code No.: **50B08**

MR15-2015-16 & 2016-17 Batch

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, NOVEMBER-2018

Subject: Elementary Calculus & Transforms

Branch: Common to CE, ME, EEE & ECE

Time: 3 hours

PART – A

Answer ALL questions of the following

5x2Mark=10 Marks

Max. Marks: 60

- 1. Find the Smallest positive period T of the following functions: $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, $\cos \pi x$, $\sin \pi x$, $\cos 2\pi x$, $\sin 2\pi x$.
- 2. Find the Z-transform of n^2a^n .
- 3. Sketch the region of integration in the double integral $\int_{0}^{2a} \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x,y) dy dx.$
- 4. Sate Cauchy's Mean Value theorem.
- 5. State Green's theorem.

PART-B

Answer any FIVE Questions of the following

5x10 Marks= 50Marks

- 1. Express the function $f(x) = \sqrt{1 \cos x}$ in $-\pi < x < \pi$ as Fourier series. [10M]
- 2. Find the Fourier series of the function $f(x) = \begin{cases} -a, & when -l < x < 0 \\ a, & when 0 < x < l \end{cases}$ [10M]
- 3.a) Solve the partial differential equation (y+z)p (z+x)q = x-y [5M]
 - b) Find the inverse Z-transform of $\frac{3z^2 18z + 26}{(z-2)(z-3)(z-4)}$. (5 m)
- 4. a) Solve the partial differential equation: $q^2 = z^2 p^2 (1 p^2)$. [5M]
 - b) Form the partial differential equation from: $f(x^2 + y^2, z xy) = 0$. [5M]
- 5. Trace the curve $r = a \sin 3\theta$, a > 0
- 6. Trace the curve $x^2 y^2 = a^2(y^2 x^2)$
- 7. Using Lagrange Method of Multiplier, find the minimum values of the function $A(r, h) = 3 \pi r^2 + 2 \pi r h$ subject to the constraint: $\pi r^2 h + \frac{2}{3} \pi r^3 400 = 0$.
- 8. a) By transforming to triple integral, evaluate $\iint_S (x^3 \, dy dz + x^2 y \, dz dx + x^2 z \, dx dy)$ where S is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ and the circular discs z = 0 and z = b. [5M]
 - b) Using Green's theorem, evaluate $\iint_C (y \sin x) dx + \cos x dy$, where C is the plane triangle enclosed by the lines y = 0, $y = \pi/2$ and $y = 2x/\pi$.